



### Background

- Steady global escalation in energy prices
- Utilities cost (gas, electricity) creeping up
- Current estimate: \$6 to \$10 per pig sold
- 3rd largest variable cost component (after feed and labour)
- Reducing utilities cost can be significant competitive advantage

### **Project objectives**

- Conduct comparative evaluation of energy use
- Quantify impact of energy-conservation strategies using simulation
- Demonstrate selected measures in actual barn
- Develop decision-support software tool



- Phase 1: Benchmarking
- Phase 2: Evaluation of energy-conservation measures
- Phase 3: Demonstration in actual barn
- Phase 4: Development of decision-support tool
  - Phases 1 & 2 currently funded by ACAAFS
  - Phases 3 & 4 additional funding sought



- Survey of 25 to 30 swine operations
  - Different types Farrow-to-Finish, Farrowing, Nursery, Finishing, Grow-Finish, etc.
  - Determine energy cost (\$) per pig
- Energy audits in selected barns
  - Identify energy-intensive tasks
  - Measure actual energy usage summer, winter
  - Monitoring of parameters related to energy use

### Phase 2: Evaluating conservation measures

- Use computer simulation simulate a typical barn, apply various conservation measures
  - lighting: energy-efficient lamps, lighting schedule, cleaning
  - heating: energy-efficient heaters and lamps, reduced nocturnal temperature settings, heat recovery systems, alternative fuels
  - ventilation: energy-efficient fans, improved controls and ventilation efficiency, alternative cooling systems
  - materials handling: feed handling, manure removal, reduced contaminant generation
  - management: peak demand load shifting, equipment and building envelope maintenance

### **Phase 3: Actual demonstration**

- Most promising measures will be selected based on simulation results
- Retrofitted into actual rooms at PSC Elstow barn
- Impact on energy use, animal productivity, room environment will be monitored; compared with conventional rooms
- Results displayed at the Pork Interpretive Gallery

## Phase 4: Decision-tool development

- Software tool has 2 main functions:
  - Allow monitoring of monthly energy consumption & cost patterns, specific to the facility
  - Provide projected cost savings if various energyconservation options available in the software are implemented; estimate pay-back for investment
- Facilitate management decisions on adopting available measures
- Distributed in CDs, or from website











|                                     |                                             | \$/100-kg p       | oig sold | \$/animal marketed |     |
|-------------------------------------|---------------------------------------------|-------------------|----------|--------------------|-----|
| Type of barns                       | Size range                                  | Range             | Avg      | Range              | Avg |
| Farrow-Finish                       | 300 to 1,500 sow                            | 3.5 – 12.0        | 6.3      | 3.0 - 12.0         | 6.8 |
| Farrow-Finish<br>excluding feedmill | 300 to 2,000 sow                            | 6.0 – <b>11.5</b> | 6.3      | 3.8 - 13.0         | 6.5 |
| Grow-Finish                         | 10,000 to 40,000<br>feeders/<br>weanlings   | 1.2 - 2.6         | 1.7      | 1.3 - 2.1          | 1.7 |
| Nursery                             | 130,000 to<br>140,000 feeders/<br>weanlings | 1.7 – 2.2         | 2.0      | 0.5 - 0.7          | 0.6 |
| Farrow-wean                         | 150 to 1,200 sow                            | 8.2 – 17.8        | 12.2     | 0.8 - 4.3          | 1.9 |

**Results of Benchmark Survey** 

# **Results of Benchmark Survey**

Highest and lowest energy users within each barn category

|                                        | Lowest energy user |          |          | Highest energy user |           |          |
|----------------------------------------|--------------------|----------|----------|---------------------|-----------|----------|
| Type of barns                          | Size               | \$/100kg | \$/ head | Size                | \$/100 kg | \$/ head |
| Farrow-Finish                          | 1,500              | 3.5      | 4.3      | 1,000               | 10.2      | 11.9     |
| Farrow-Finish<br>excluding<br>feedmill | 700                | 6.0      | 3.8      | 600                 | 7.2       | 8.1      |
| Grow-Finish                            | 30,000             | 1.2      | 1.3      | 25,000              | 2.6       | 1.7      |
| Nursery                                | 140,000            | 1.7      | 0.5      | 140,000             | 2.2       | 0.7      |
| Farrow-wean                            | 1,000              | 8.2      | 0.9      | 1,200               | 17.8      | 1.71     |



| Electrical Energy Consumption |       |                                    |             |                      |                      |        |       |  |
|-------------------------------|-------|------------------------------------|-------------|----------------------|----------------------|--------|-------|--|
|                               |       | Electrical Energy Consumption, kWh |             |                      |                      |        |       |  |
| Day                           | Hours | Heat<br>lamps                      | Heat<br>Pad | Stage<br>1&2<br>fans | Distribution<br>fans | Lights | TOTAL |  |
| 1                             | 12    | 38.0                               | 7.3         | 14.7                 | 1.0                  | 2.1    | 63.1  |  |
| 2                             | 24    | 34.7                               | 9.0         | 29.2                 | 1.9                  | 4.4    | 79.1  |  |
| 3                             | 24    | 20.1                               | 20.6        | 30.3                 | 1.9                  | 4.4    | 77.2  |  |
| 4                             | 24    | 16.4                               | 16.6        | 30.2                 | 1.9                  | 4.4    | 69.5  |  |
| 5                             | 24    | 0.0                                | 14.6        | 27.7                 | 1.9                  | 4.4    | 48.6  |  |
| 6                             | 24    | 0.0                                | 10.7        | 26.8                 | 1.9                  | 4.4    | 43.8  |  |
| 7                             | 24    | 0.0                                | 8.8         | 26.1                 | 1.9                  | 4.4    | 41.1  |  |
| 8                             | 13    | 0.0                                | 9.3         | 12.7                 | 0.9                  | 2.5    | 25.3  |  |





























### Additional tasks

- Currently monitoring Barn D
- Installation of gas meters in the barns
- Winter monitoring
  - Temperature and relative humidity
  - Indoor air quality parameters
  - Energy (electricity and gas) consumption
- Computer simulation
- Secure funding for Phases 3 & 4

#### Take-home messages

- Global energy indicators point to continuing escalation of energy costs in the future
- Current swine production operations need to be optimized for improved energy use
- Range of energy cost values indicates a wide range of opportunities to reduce energy cost in swine barns
- An Energy Audit program will help producers assess their current energy usage and decide on appropriate energy conservation measures.



- Advancing Canadian Agriculture and Agri-food Saskatchewan
- Collaborating pork producers
- Strategic funding: Sask Pork, Manitoba Pork,

Alberta Pork, Saskatchewan Agriculture and Food

