

Energy systems

• DE vs NE (s)

1

- Estimated that \$2 to \$3 per pig saved by switching to the NE system
- Provides a system to accurately price and rank ingredients according to the energy content

The NE system is "better" at predicting outcome
But we still need good inputs!!

Experimen	tal diets,	wean	ling
	Forr	nulated NE, Mc	al/kg
Ingredient	2.21	2.32	2.42
Wheat	51.9	57.5	63.2
SBM	27.0	19.3	11.5
Fish Meal	8.50	8.50	8.50
Soy protein conc	2.25	2.25	2.50
Skim milk	2.50	2.50	2.50
Lactose	5.00	5.00	5.00
Canola oil	0.50	1.75	3.00
DE. Mcal/kg	3.26	3.32	3.37
NE, Mcal/kg	2.15	2.26	2.37
TID Lvs. %	1.47	1.51	1.67
CP, %	29.0	26.7	24.7

	Form	nulated NE. Mc	al/kɑ
Ingredient	2.18	2.29	2.40
Barley	55.45	31.33	6.80
SBM	24.00	22.20	20.40
Wheat	15.00	39.55	64.51
Canola oil	1.00	2.25	3.50
Lysine	0.190	0.270	0.350
L-Threonine	0.060	0.093	0.125
DL-Methionine	0.045	0.058	0.070
L-Tryptophan	0.005	0.005	0.000
DE. Mcal/kg	2.93	3.13	3.21
NE, Mcal/kg (Retained energy)	2.12	2.22	2.28
NE Mcal/kg (Calorimetry)	2 23	2 27	2 40

DE intake, and		
ADG	0.9157	0.57
ADFI	0.9862	0.97
G:F	-0.1350	-0.08
Empty body CP content	-0.2347	-0.19
Empty body lipid content	0.6005	0.43
NE intake, and		
ADG	0.8982	0.55
ADFI	0.9636	0.96
G:F	-0.1219	-0.05
Empty body CP content	-0.2858	-0.23
Empty body lipid content	0.6592	0.47
Empty body lipid content	0.6592	0.47

DE intake, and		
ADG	0.9157	0.57
ADFI	0.9862	0.97
G:F	-0.1350	-0.08
Empty body CP content	-0.2347	-0.19
Empty body lipid content	0.6005	0.43
NE intake, and		
ADG	0.8982	0.55
ADFI	0.9636	0.96
G:F	-0.1219	-0.05
Empty body CP content	-0.2858	-0.23
Empty body lipid content	0.6592	0.47

			IVICal/K	g	Feed	ing ieve	a, % ad	lid
		2.18	2.29	2.40	80	90	0 10	0
Protein dep	osition,							
	DE	43.	0	42.9	39.7	44.7	41.4	39.6
	NEª	69.	7	72.0	66.3	76.3	68.1	63.8
Lipid deposi	ition,*							
	DE	34.	0	36.2	39.0	33.0	31.3	45.1
	NE ^a	54.	В	60.9	65.0	56.4	51.4	47.4

ference	DE		NE
		Grow	Finish
C 1998	3.1	1.17	1.17
vant 2004	2.7	1.67	1.94
n (2009)		1.67	2.72
and Shurson 2009, n	=11		
inimum	3.48		
laximum	4.04	(chemically simila	ar to Stein 200
verage	3.64		
verage	3.64		

Energy val	UES (as fed,	f or wl , Mcal/kg)	neat	DDGS
		DE	NE	
Reference	Grow	Finish	Grow	Finish
Sauvant 2004, < 7 % starch	2.70	2.94	1.60	1.72
Sauvant, 2004 > 7 % starch	3.27	3.42	2.03	2.13
Nyachoti et al 2005	3.20			
Widyaratne and Zijlstra 2007	3.62		2.14	
Zijlstra and Beltranena 2007	3.86		2.47	
PAARIE SWINE CENTRE				

Source of energy

5

•All nutrients, (carbohydrates, lipid, protein) except water and ash provide the pig with energy

•The pig has an obligatory requirement for glucose •Glucose can be obtained from, - diet (starch)

- endogenous synthesis
The pig has a dietary requirement for glucose?

Does dietary starch impact protein deposition in the growing pig?

	Response	of grov	ving pię of	gs to in the die	creasii et	ng star	ch contei	nt
			Ado	ded sta	rch, %			
	Nutrient gain, kg	0	5.5	11	16.5	22	SEM	P = linear
	Crude protein	3.20	3.09	3.65	3.84	4.02	0.22	<0.001
	Crude fat	0.52	0.42	0.45	0.76	0.81	0.14	<0.001
	Water	13.23	13.22	14.63	15.73	15.68	0.65	<0.001
	CP gain /CP intake	.329	.316	.362	.349	.365	.017	<0.001
-	CP _{gain} /DE _{intake} , g /kcal	1.15	1.14	1.28	1.25	1.27	0.16	0.034

Corn vs wheat DDGS

Corn DDGS

- Extensively researched
- Product has (or should have) reduced variability

Wheat DDGS

- Research lacking
- Variability ie. How much wheat in wheat DDGS?

Pricing need to also consider

Corn DDGS

- 30 % inclusion reduced dressing % by 1.2 %
- Withdrawal strategies required to mitigate concerns with fat quality

Wheat DDGS

10

- Dressing percent reduced, 0.45 % for every
- 7.5 % added (1.2% for 20% inclusion)

Labelling of DDGS, CFIA Table IV

- 5.5.21
- Wheat distillers grains dehydrated (IFN 5-05-193) is the product obtained after the removal of ethyl alcohol by distillation from the yeast fermentation of a wheat or a grain mixture in which wheat predominates by separating the resultant coarse grain fraction of the whole stillage and drying it by methods employed in the grain distilling industry. It shall be labelled with guarantees for minimum crude protein, maximum moisture and maximum crude fibre.

Labelling of DDGS, CFIA Table IV

• 5.5.21

 Wheat distillers grains dehydrated (IFN 5-05-193) is the product obtained after the removal of ethyl alcohol by distillation from the yeast fermentation of a wheat or a grain mixture in which wheat predominates by separating the resultant coarse grain fraction of the whole stillage and drying it by methods employed in the grain distilling industry. It shall be labelled with guarantees for minimum crude protein, maximum moisture and maximum crude fibre.

- Is the problem nutrients? or access to feed?

1

Materials and Methods

- 2 diets, complex (\$720) and simple (\$340)
- 3 feeding regimes a) complex 0 to 1, b) complex 0 to 4, c) simple 0 to 14
- Two body weights at weaning
- Creep or no creep

1

		Dietary re	egime			
Kg/d		А	В	С	SEM	P value
ADG	d 0-1	-0.11	-0.12	-0.20	0.02	0.002
	d 2-4	0.03	0.14	0.06	0.01	<0.001
	d 5-7	0.14	0.13	0.15	0.01	0.21
	d 8 - 14	0.31	0.30	0.33	0.01	0.05
	- Comple - Comple - Simple	ex 0 – 1 ex 0 – 4 e 0 - 14				

Heavy -0.26 -0.07 -7 0.12 -14 0.29 Cree	Light -0.02 0.08 0.15 0.34 ep feed	SEN 0.02 0.00 0.01	M P <
-0.26 0.07 7 0.12 14 0.29 Cree	-0.02 0.08 0.15 0.34	0.02 0.00 0.01	2 <0.001 0 0.04 0 0.001 4 <0.001
0.07 0.12 14 0.29 Cree	0.08 0.15 0.34 ep feed	0.00 0.01 0.01	0 0.04 0.001 <0.001
• 7 0.12 • 14 0.29	0.15 0.34 ep feed	0.01	0.001
- 14 0.29	0.34 ep feed	0.01	<0.001
Cree	ep feed		
Cree	ep feed		
No	Yes	SEN	Л P <
-0.12	-0.16	0.02	0.36
4 0.08	0.07	0.01	0.43
7 0.16	0.12	0.02	0.20
- 14 0.33	0.30	0.02	0.20
	4 0.08 7 0.16 14 0.33	4 0.08 0.07 7 0.16 0.12 14 0.33 0.30	4 0.08 0.07 0.01 7 0.16 0.12 0.02 14 0.33 0.30 0.02

Managing Feed Costs Checklist

•Out of feed events •Water availability and flow •Wastage •Feeder adjustment •Cleanliness •Rodents

5

•Seasonal effects on performance

Acknowledgements

Prairie Swine Centre, Inc. acknowledges program funding from Sask Pork, Alberta Pork, the Manitoba Pork Council, and the Saskatchewan Agriculture Development Fund

RAIR'