

Outline

- Introduction
- On-going engineering research at PSCI
 - Occupational exposure of barn workers
 - Application of nanoparticles to reduce emissions
 - Energy use in swine barns
- Strategies for improving barn energy efficiency
- Take home messages

PSCI Engineering Research Goals

- To improve barn environment through the development of economical and practical techniques ensuring the health and safety of barn workers and animals
- To reduce the environmental footprint of pork production through breakthroughs in the science of odour and gas emissions, nutrient and water management, utility and resource efficiency

Occupational exposure of barn workers

- Background
 - Knowledge gaps:
 - correlate studies on control measures with reduction of worker occupational exposure
 - compare commercial monitoring devices vs. standard assessment methods
 - Compliance with Workplace Safety and Health Regulations
 - Funded by MLMMI

Occupational exposure of barn workers

- Objectives
 - Evaluate the impact of engineering and management measures on:
 - Ammonia (NH₃) and dust concentrations
 - Occupational exposure of barn workers
 - Pig performance.
 - Compare conventional and standard methods for measuring NH₃

Measures

- · Canola oil sprinkling
- Low crude protein diet
- Manipulation of manure pH
- High level of cleaning
- Control (conventional)

• Current findings: - Canola oil sprinkling tended to result in lower respirable dust levels - Low crude protein diet can reduce ammonia concentrations - Personal monitoring showed higher level of worker exposure compared to area sampling - Ammonia gas monitors tended to yield higher readings than the standard (NIOSH) method

Energy use in swine barns

Utilities - 3rd largest cost component

Study conducted at the Prairie Swine Centre (2008):

- Average utility cost (electricity and natural gas) \$5 to \$12 per pig produced
- Heating and ventilation major portion of total utility cost
- For a typical 600-sow farrow-to-finish barn (2007-08 prices):
 - electricity bill: ~ \$55,000/yr
 - natural gas cost: ~ \$53,000/yr

Project objectives

- Benchmark energy use in the industry
- Evaluate energy conservation measures
- Actual in-barn assessment of selected measures
- Develop decision-support tool

Benchmarking results

Type of		\$/100 kg pig sold		\$/animal marketed	
barns	Size range	Range	Average	Range	Average
Farrow-Finish	300 to 1,500 sow	3.5 - 12.0	6.3	3.0 - 12.0	6.8
Farrow-Finish w/o feedmill	300 to 2,000 sow	6.0-11.5	6.3	3.8-13.0	6.5
Grow-Finish	10,000 to 40,000 feeders/weanling	1.2-2.6	1.7	1.3-2.1	1.7
Nursery	130,000-140,000 feeders/weanling	1.7-2.2	2	0.5-0.7	0.6
Farrow-wean	150 to 1,200 sow	8.2-17.8	12.2	0.8-4.3	1.9

Evaluation of conservation measures

- Use of computer simulation software package TRNSYS
 - based on steady state energy conservation laws formulated in thermodynamic quantities
 - o Interface consists of "input" and "output" quantities
 - > Outputs solved using successive substitution

Results from 5-week data collection

_	Avg. Room	_	
Room	Temp. °C	Consumption for heating	
Control room	21.55	226.71	m ³ natural gas
Heat exchanger room	22.10	42.51	m ³ natural gas
Geothermal heating room	21.25	1206	kWh electricity
Radiant heater room	21.28	331.56	m ³ natural gas

Energy use in swine barns

- Current findings:
 - Air temperature maintained near set-point
 - Geothermal system and heat exchanger consumed less energy (so far)

Tips for improving barn energy efficiency

Take-home messages

- Know the <u>operation and functions</u> of heating and ventilation system components
- Avoid common heating and ventilation mistakes
- <u>Monitor</u> ventilation settings regularly and implement a maintenance checklist
- <u>Reduce</u> energy consumption if possible, or <u>maximize</u> efficiency of use of required energy.

The barn operator equipped with good understanding of the heating and ventilation components is the <u>best person</u> that can run the system in an optimal manner.

Pa.

Acknowledgement

- Sask Pork
- Manitoba Pork
- Alberta Pork
- SK Ministry of Agriculture
- NSERC
- MLMMI
- ACAAFS
- Elanco
- Masterfeeds