

Nursery vs G/F pig performance

Two opposing views:

- 1. Conventional: Pigs that perform better postweaning will perform better up to market weight
 - Consistent with negative effect of intra-uterine growth retardation on physiology and nutrient metabolism in growing pigs (e.g. Wu, 2006; Michiels et al., 2013; Kruger et al., 2013)
 - Based on regression analyses on large number of pigs, (e.g. Pollman, 1993; Mahan and Lepine, 1993; Mahan et al., 2004):
 - May be confounded with weaning age and weight or farm
 - Largely based on statistical analyses of performance data 'within' groups of pigs; not 'factorial' studies
 - An important incentive to maximize performance in the nursery & feeding pig starter diets that are highly fortified with complex ('expensive') ingredients and antibiotics

	Base					
Feed	117.43					
Breeding herd	18.28					
Nursery	18.15 (15% of feed & 10% o					
G/F	81.01					
Labour	13.20					
Other variable costs	25.55	Also, consider antibiotic usage &				
Fixed costs	20.74	ingredient quality				
Total	176.93					

OMAF & MRA Swine Budget, Dec 2013

Nursery vs G/F pig performance

Two opposing views:

- 2. Alternative: Reduced growth performance postweaning has no impact on long-term growth performance:
 - Starter pigs show compensatory growth following protein intake restriction (Wellock et al., 2007)
 - View is supported by recent observations in UK (MLC, 2007) Denmark (Callesen et al., 2006), Australia (Collins et al., 2013)
 - > An argument to reduce diet costs and use of antibiotics
 - Growth recovery of growth may vary with cause of growth
 restriction (Nelssen et al., 1999):
 - recovery only after nutrient intake restriction, not when pigs are fed poor quality or antibiotic free diets ?

MLC stu	dies: g	growth	perfor	mance	è
_	diet	CP	diet Qu	uality	
	Low	High	High	Low	
Gain, g/d					
Weaning to d 14	201ª	232 ^b	232 <mark>a</mark>	201 ^b	P<.05
Day 14 to 32 kg	574	576	577	573	ns
32 to 105 kg	1079	1034	1073	1040	ns
Overall	807	797	807	797	ns
Feed : Gain, g/g					
Weaning to d 14	1.84 ^a	1.59 ^b	1.64	1.80	P=.09
Day 14 to 32 kg	1.58	1.56	1.57	1.57	ns
32 to 105 kg	2.46	2.47	2.45	2.49	ns
Overall	2.13	2.17	2.15	2.15	ns
pigs weaned 29 <u>+</u> 3.1 days	& 9.9 <u>+</u> 0.9	95 kg BW; ide	entical feeding		
				Welloc	k et al., 2009

	Low CP	(1.20% LYS)	High CP	(1.6% LYS)
	High Q	Low Q	High Q	Low Q
Cooked wheat	32.8	-	24.8	-
Cooked deh. oats	12.5	-	12.5	
Cooked corn	12.5	-	12.5	-
Fish meal	3.0	-	5.0	-
Hamlet protein	10.0	-	10.0	-
Skim milk	7.5		10.0	
Wheat	-	19.9	-	4.6
Corn	-	12.5	-	12.5
Deh. oats	-	12.5	-	12.5
Soybean meal	-	12.5	-	20.0
Full fat soya	-	17.5	-	27.5
Lactose	8.5	15.0	5.0	15.0

MLC studies: growth performance								
diet	СР	diet Qu	ality					
Low	High	High	Low					
2.02	2.02	1.96 <mark>ª</mark>	2.08 ^b	P<.05				
1.09	1.05	1.03 <mark>a</mark>	1.10 ^b	P=0.05				
5.80	5.00	4.68 <mark>ª</mark>	6.13 ^b	P<.05				
1.26	1.29	1.34 <mark>a</mark>	1.21 ^b	P<.05				
80.5	81.3	81.0	80.8	ns				
12.0	12.5	12.4	12.1	ns				
60.1	60.2	60.2	60.1	ns				
<u> </u>	95 kg BW; id	entical feeding		fter day 14 et al., 2009				
	diet Low 2.02 1.09 5.80 1.26 80.5 12.0 60.1	diet CP Low High 2.02 2.02 1.09 1.05 5.80 5.00 1.26 1.29 80.5 81.3 12.0 12.5 60.1 60.2	diet CP diet Qu Low High High 2.02 2.02 1.96 ^a 1.09 1.05 1.03 ^a 5.80 5.00 4.68 ^a 1.26 1.29 1.34 ^a 80.5 81.3 81.0 12.0 12.5 12.4 60.1 60.2 60.2	diet CP diet Quality Low High High Low 2.02 2.02 1.96 ^a 2.08 ^b 1.09 1.05 1.03 ^a 1.10 ^b 5.80 5.00 4.68 ^a 6.13 ^b 1.26 1.29 1.34 ^a 1.21 ^b 80.5 81.3 81.0 80.8 12.0 12.5 12.4 12.1 60.1 60.2 60.2 60.1				

Research Hypotheses (proposal to Ontario Pork 2010)

- In order to optimize carcass quality and growth performance up to market weight newly-weaned pigs should be fed an antibiotic containing complex diet.
- 2. Based on a select number of biomarkers the negative impact of sub-optimal nutrition during the first few weeks post-weaning on subsequent growth performance can be predicted.

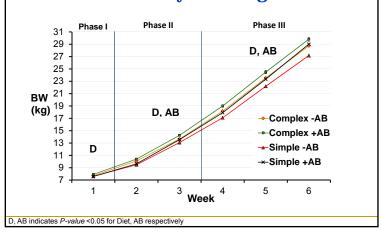
Research objectives:

- Investigate the effect of growth rate of pigs in the nursery - as affected by diet complexity and/or high versus low usage of in-feed antibiotics - on subsequent growth performance and carcass quality.
- 2. Explore selected indicators of the health status, immune function and growth performance (i.e. plasma cytokines, hormones, expression of genes regulating nutrient use, growth and immune function) to assess and predict the impact of external stressors on growth performance during both the nursery and growingfinishing phase.

Benefit of Research

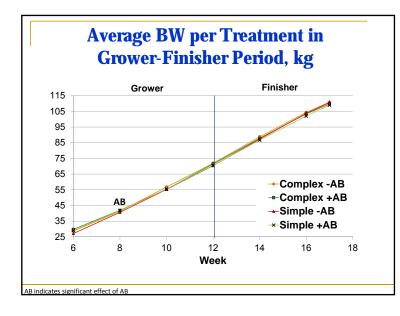
- 1. Either....reduction in nursery feed costs without long-term effects on pig performance
 - Or.....better assessment of value of complex nursery feeding programs.
- 2. Biomarkers to predict whether stressors imposed on pigs during the post-weaning period will cause long-term reductions in growth performance

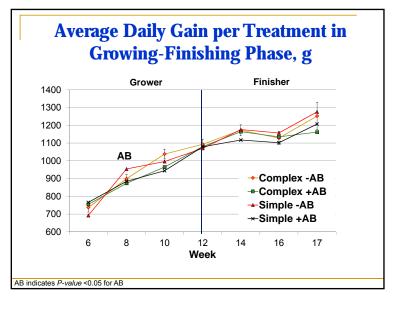
Methodology


- 5 blocks of 96 newly weaned pigs (7.02±0.07 kg)
- 4 treatment groups in a 2x2 factorial design based on diet complexity (Diet) and antibiotic usage (AB)
- Pigs assigned to pens in a randomized complete block design with 3 pens per treatment per block
- Pens of pigs moved to growing-finishing rooms 6 weeks post-weaning and fed common diets

Nursery diet compositions (% as fed)							
	C	omplex			Simple		
Phase	I	Ш	Ш	I	П	III	
Corn	18.85	38.7	50.23	47.14	49.57	47.25	
Wheat				10	10	10	
Barley	25	25	25				
SBM, 47.5%	10.8	15	21	24	34	37	
Whey	20	8	-	8	-	-	
Herring ml, %	5	3	-	5	-	-	
Blood plasma, AP920	4.5	2	-	-	-	-	
Blood ml, spray dried	-	2	2	-	-	-	
Oat groats	10	-	-	-	-	-	
Calcium propionate	0.4	0.4	0.2	-	-	-	
Calcium formate	0.4	0.4	0.2	-	-	-	
Fat, AA, vit, min	+	+	+	+	+	+	
DE, MJ/kg	14.43	14.30	14.49	14.93	14.92	14.96	
SID Lys, %	1.35	1.25	1.17	1.21	1.25	1.17	

Measurements/Analysis


- Body weight, feed intake measured weekly in the nursery, bi-weekly in growing-finishing barn until the 17th week post-weaning
- Carcass quality assessed when pigs were slaughtered at about 115 kg BW
- Serial blood sampling (wk 0, 2, 4, 6, 10, 14 & 17 post-weaning) and tissue plus body composition analyses in a subsample of pigs (wk 2, 8, 12, 17 post-weaning)


Average Body Weight per Treatment in Nursery Phase, kg

Average Daily Gain, g										
Treatment P-values										
Period	Compl. -AB	Compl. +AB	Simple -AB	Simple +AB	SE	AB	Diet	AB x Diet		
Wk 1	99	129	81	78	10.41	0.16	<0.01	0.09		
Wk 2-3		451	388	425	-	<0.01		0.50		
Wk 4-6		733	661	706	23.76	0.03	<0.01	0.28		
VVK 4-0	111	100	001	100	23.70	0.03	~ 0.01	0.20		

			Gair	n:Fee	d					
Treatment No differences among										
Period	Compl. -AB	Compl. +AB	Simple -AB	trea in	tments dicate	in Pha early o	se III m			
				recove	ered gr	owth p	erforma	ance		
Wk 1	0.54	0.62	0.45	0.47	0.04	0.16	<0.01	0.36		
Wk 2-3	0.79	0.78	0.74	0.76	0.02	0.40	0.01	0.26		
Wk 4-6	0.57	0.57	0.56	0.59	0.02	0.16	0.57	0.08		

W	ean-to	o-Fir	nish /	Avera	age I	Daily	Gair), g
		Treat	ment			F	P-values	S
Period	Compl. -AB	Compl. +AB	Simple -AB	Simple +AB	SEM	AB	Diet	AB x Diet

Phase I	99	129	81	No	effect o	f treatm	ent on	90
Phase II	427	451	388		ference	ADG des es durin	g the	50
Phase III	717	733	661		nurse	ery perio	bd	28
Grower	1010	973	1007	969	26.9	0.02	0.82	0.995
Finisher	1170	1152	1188	1129	48.1	0.12	0.92	0.41
Overall	883	872	872	853	28.4	0.13	0.12	0.71

Carcass Quality								
	P-values							
	Complex -AB	Complex +AB	Simple -AB	Simple +AB	SEM	Diet		
Final live weight, kg	110.9	109.7	110.6	109.0	0.86	0.56		
Carcass weight, kg	95.5	95.5	95.3	95.2	0.74	0.68		
Lean yield, %	60.0	60.2	60.3	60.2	0.30	0.48		
Fat depth, mm	20.4	20.0	19.5	19.4	0.68	0.19		
Muscle depth, mm	63.2	63.2	61.2	62.3	1.15	0.07		

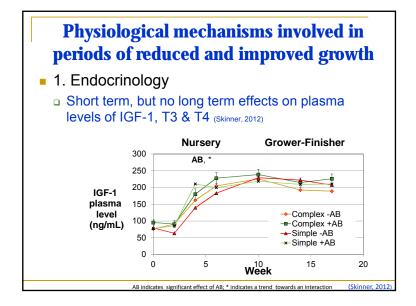
	We	an-to	o-Fin	ish C	ain:	Fee		
		Treat		I	P-value	s		
Period	Compl. -AB	Compl. +AB	Simple -AB	Simple +AB	SEM	AB	Diet	AB x Diet
Phase I	0.54	0.62	0.45	0.47	0.04	0.16	<0.01	0.36
Phase II	0.79	0.78	0.74	0.76	0.02	0.40	0.01	0.26
Phase III	0.57	0.57	0.56	0.59	0.02	0.16	0.57	0.08
Grower	0.45	0.45	0.46	0.45	0.02	0.35	0.67	0.66
Finisher	0.35	0.35	0.35	0.36	0.01	0.56	0.36	0.92
Overall	0.42	0.43	0.43	0.43	0.01	0.12	0.15	0.97

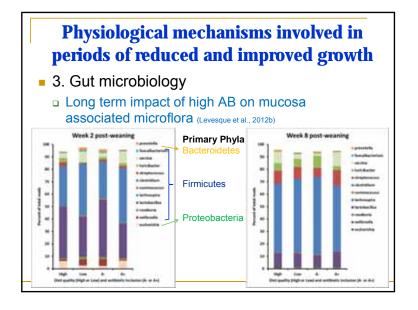
Meat Quality & Carcass Composition

 No treatment effect on loin meat quality or the weight of primal and retail cuts (except primal belly)

• Simple nursery diets tended to increase belly weight

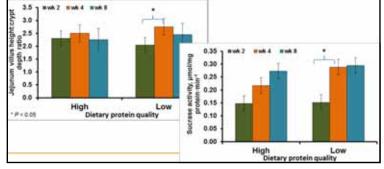
- No consistent differences in carcass composition or rates of body protein deposition (Pd) and body lipid deposition (Ld)
 - Simple nursery diets tended to increase Pd in finisher phase
- No effect of nursery diet complexity or in-feed antibiotic usage on final carcass composition


	Feec	Cost ¹	(\$/pig)	
		Diet	:	
	Complex -AB	Complex +AB	Simple -AB	Simple +AB
Nursery	18.79	5 per pig ir cost savii		14.82
Total	94.78	94.37	89.31	88.20


Ì	Morta	ality ('	% of p	oigs v	veane	ed)
			Block			
Treatment	1	2	3	4	5	1 to 5
Complex -AB	8.3	0.0	3.3	13.3	10.0	7.2
Complex +AB	4.2	16.7	16.7	16.7	16.7	14.5
Simple -AB	12.5	20.8	10.0	10.0	26.7	15.9
Simple +AB	4.2	16.7	13.3	13.3	30.0	15.9
Block total	7.3	13.5	10.8	13.3	20.8	

Growth 1	Performa	nce in 5 th	Block	
		Treat	ment	
	Complex -AB	Complex +AB	Simple -AB	Simple +AB
Wk 6 BW, kg	28.13	29.60	24.61	25.94
Wk 17 BW, kg	110.9	111.4	108.4	106.0
Wk 1-6 ADG, g	508	533	415	428
Wk 1-17 ADG, g	874	880	853	835
Wk 1-6 G:F	0.63	0.64	0.59	0.60
Week 1-17 G:F	0.45	0.44	0.44	0.46

Conclusions (1/2): growth performance


- Feeding simple nursery diets reduced growth performance in the nursery
- Excluding AB from nursery diets reduced growth performance in the nursery
 - Induced subsequent compensatory growth
- No effect of nursery die complexity on days to market, overall feed efficiency, body composition, meat quality or carcass quality

Physiological mechanisms involved in periods of reduced and improved growth

 Digestive capacity
 Increased villus height:crypt depth ratio and improved digestive enzyme activity (Levesque et al., 2012a)

Interaction between week post-weaning and nursery diet on ileal mucosa bacterial species

	Wee	k 2	We	ek 8	
	High	Low	High	Low	sem
Clostridium leptum	11.6 ^{a,b}	27.2ª	5.3 ^b	1.0 ^b	6.4
Clostridium paraputrificum	3.2 ^{a,x}	0.8 ^{a,x}	6.5×	13.3 ^{b,y}	2.4
Escherichia albertii	2.2ª	0.42 ^b	0.09 ^b	0.05 ^b	0.5
	Wee	k 2	We	ek 8	
	A-	A+	A-	A+	sem
Veillonella parvula	2.1×	0.08 ^y	0.09 ^y	0.03 ^y	0.6
Clostridium sordellii	0.60 ^x	4.6 ^{x,y}	9.2 ^y	2.6 ^x	2.2
Clostridium difficile	0.14 ^x	1.3 ^y	0.78 ^{x,y}	0.54 ^{x,y}	0.4
Clostridium bifermentans	0.67 ^a	6.8 ^b	2.8 ^{a,b}	3.1 ^{a,b}	1.6
Lactobacillus salivarius	1.2ª	0.11ª	4.9 ^b	0.20 ^a	0.8
Potentially pathogenic, potentially	/ beneficial, n	on-virulen	t	(Levesque	et al., 201

Interaction between week post-weaning and	
nursery diet on ileal mucosa bacterial specie	S

	Wee	k 2	We	ek 8	
	High	Low	High	Low	sem
Clostridium leptum	11.6 ^{a,b}	27.2ª	5.3 ^b	1.0 ^b	6.4
Clostridium paraputrificum	3.2 ^{a,x}	0.8 ^{a,x}	6.5×	13.3 ^{b,y}	2.4
Escherichia albertii	2.2ª	0.42 ^b	0.09 ^b	0.05 ^b	0.5
	Wee	ek 2	We	ek 8	
	A-	A+	A-	A+	sem
Veillonella parvula	2.1×	0.08 ^y	0.09 ^y	0.03 ^y	0.6
Clostridium sordellii	0.60×	4.6 ^{x,y}	9.2 ^y	2.6×	2.2
Clostridium difficile	0.14×	1.3 ^y	0.78 ^{x,y}	0.54 ^{x,y}	0.4
Clostridium bifermentans	0.67ª	6.8 ^b	2.8 ^{a,b}	3.1 ^{a,b}	1.6
Lactobacillus salivarius	(1.2ª	0.11ª	4.9 ^b	0.20ª	0.8
Potentially pathogenic, potentiall	y beneficial, r	on-virulent		(Levesque	et al., 20'

Physiological mechanisms involved in periods of reduced and improved growth

- 4. Gene expression (Complex+AB vs Simple –AB)
 - □ In liver, 82 genes differentially expressed
 - For some genes (growth axis, immune function) expression remained altered up to 8 weeks post-weaning

Gene Symbol	Gene Name	Fold Change (simple/complex)	P-value
ARG1	Arginase 1	1.79	0.056
CPS1	Carbamoyl phosphate synthase 1	1.56	0.057
SLA-DMA, B	Swine leukocyte antigen DMA	0.55	< 0.078
SLA-DQA, B1	Swine leukocyte antigen DMA	0.51	< 0.057
SLA-DRA, B1	Swine leukocyte antigen DMA	0.56	< 0.070
GPX1	Glutathione peroxidase 1 (cellular)	1.52	0.057
GPX3	Glutathione peroxidase 3 (plasma)	2.78	0.057
NR3C1	Glucocorticoid receptor	0.53	0.066
TXNIP	Thioredoxin interacting protein	0.59	0.057
			(Rudar et al., 20

Conclusions (2/2): Physiology

Nursery diet complexity:

- Short-term (no long-term) effect on
 - Plasma levels of key hormones involved in growth and energy partitioning
 - Digestive function
- Short and long-term effects on:
 - Liver gene expression (growth and immune function)
 - Gut microbiology

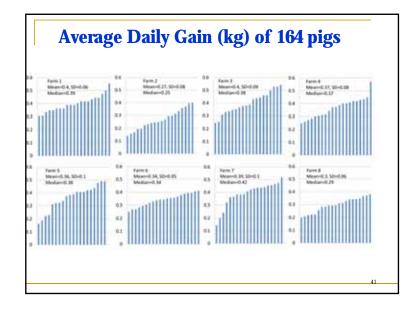
Implications

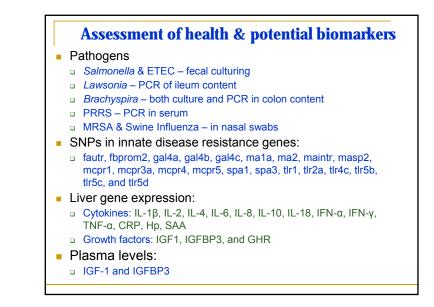
- No impact of nursery diet complexity on wean-tofinish growth performance or carcass value
 - Reduced nursery feed costs creates opportunity for increased profits
- Interactions between nursery diet complexity and immune response – during a severe disease challenge - requires further exploring
 - May be mediated through long-term changes in gut micro-flora and expression of genes involved in the immune response

Related and additional/current initiatives at the University of Guelph

- Exploring bio-markers for growth of nursery pigs
- Simple assessment of robustness of pigs fed nursery diets of different complexity (high, low, very low)
- Interactive effect of nursery diet protein quality and ω-3 fatty acids (from fish oil) on performance and immune response

M.J. Slifierz, R. Friendship, C.F.M. de Lange, M. Rudar and A. Farzan

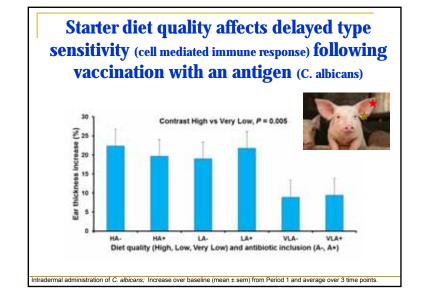

BMC Veterinary research (2013) 9:247


Objective

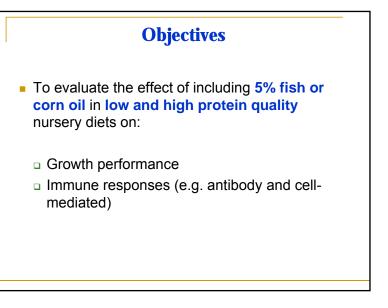
 Investigate association between growth performance, health and potential bio-markers (hepatic gene expression, plasma hormone levels, single nucleotide polymorphisms (SNPs) for growth and immune function related genes) in nursery pigs across diverse commercial farm condition

Study design

- Eight farms, 168 pigs (21 on each farm)
- At weaning: tagged, weight, blood, feces
- At 2 weeks post-weaning: blood, feces
- At 5 weeks post-weaning: weight, blood, feces, tissues
- Diseases tested: PRRS, Swine influenza, Salmonella, ETEC, MRSA, Lawsonia, Brachyspira
- Survey: sow parity, farrowing date, live born, stillborn, # of pigs, diseases history over the past year, pig flow, vaccination, drug use

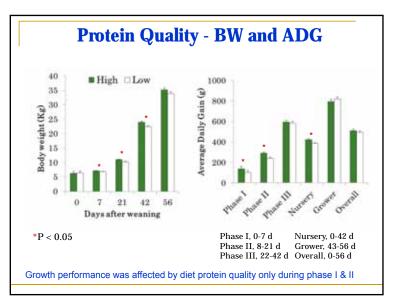


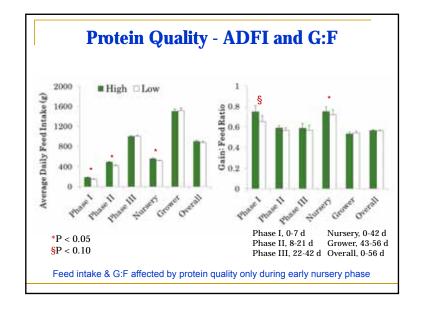
Epidemiological studies: Conclusions and Implications

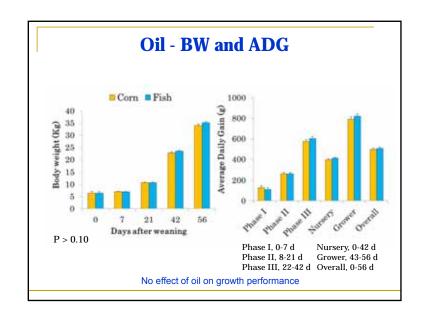

- Clear associations between expression of growth regulating genes (especially GHR and IGFBP-3) in liver and growth performance across swine production systems
- Promising genetic markers (SNPs) for identifying pigs that carry less disease and show improved growth performance (GAL-4C, MASP-2, and TLR-5B)
- Associations requires further testing to become useful biomarkers in animal selection and management

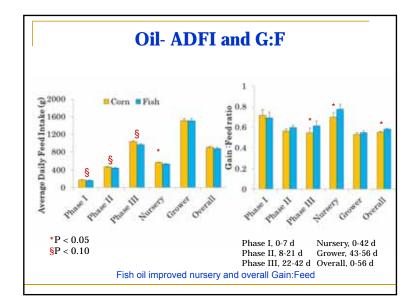
	Hig	High Quality		Low Quality			Very Low Quality		
	Phase I	Phase II	Phase III	Phase I	Phase II	Phase III	Phase I	Phase II	Phase III
days on feed	7	14	21	7	14	21	7	14	21
Ingredient composition,	%								
Corn (NRC; 8.3% CP)	18.85	38.7	50.23	47.14	49.57	47.25	62.79	58.04	53.6
Wheat, soft red winter				10	10	10			
Barley, 6 row	25	25	20						
Whey, dried	20	8		8					
AV fat blend / tallow	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5	2.5
Fishmeal, herring	5	3		5					
Blood plasma, AP920	4.5	2							
Blood meal, spray dried		2	2						
Soybean meal 48 (NRC)	10.8	15	21	24	34	37	30	35	40
Oat groats	10								
Lysine.HCI	0.3	0.25	0.35	0.16	0.25	0.05	0.34	0.23	
Methionine	0.18	0.18	0.18	0.06	0.11		0.13	0.08	
Threonine	0.1	0.12	0.16	0.04	0.09		0.12	0.05	
Tryptophan	0.02	0.02	0.02				0.02		
Limestone	0.5	0.58	0.86	1	1.18	1.1	1.5	1.5	1.5
Salt	0	0.2	0.3	0.2	0.3	0.3	0.5	0.5	0.5
Monocalcium phosphate	0.8	1	1.35	1.3	1.4	1.2	1.5	1.5	1.3
Calcium formate	0.4	0.4	0.2						
Calcium propionate	0.4	0.4	0.2						
Sweetener, saccharine	0.05	0.05	0.05						
Vitamin & mineral mix	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6	0.6
Nutrients contents									
DE, MJ/kg	14.43	14.30	14.49	14.93	14.92	14.96	14.84	14.86	14.90
Crude Protein, %	20.52	19.76	18.67	21.05	21.78	22.69	19.96	21.74	23.45
total LYS, %	1.507	1.391	1.293	1.356	1.391	1.318	1.34	1.39	1.35
SID LYS. %	1.351	1.248	1,170	1.209	1.251	1,170	1.21	1.25	1,19

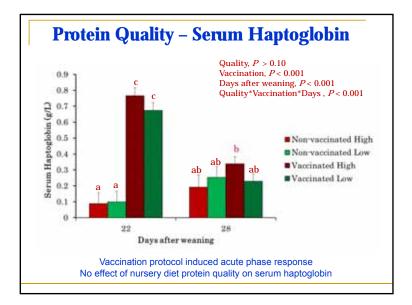
Materials and Methods

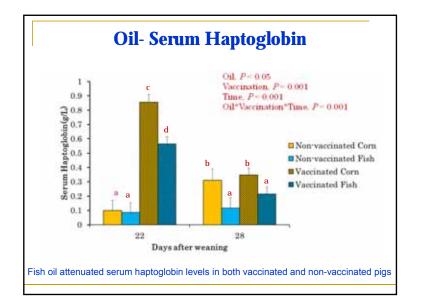

4 dietary treatments

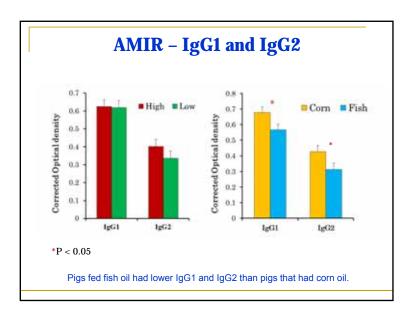

- 2 x 2 factorial arrangement
- Protein Quality- High vs. Low
- 5 % Oil -Corn vs. Fish
- Fed from 0 6 wk post-weaning in 3 Phases
 - □ Phase I, 0-7 d
 - □ Phase II, 8-21 d
 - □ Phase III, 22-42 d
- Common grower diet for 2 wk

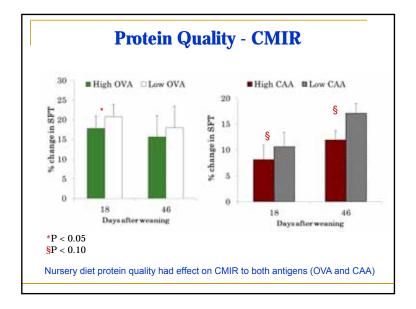

Materiak	s and	Methods	

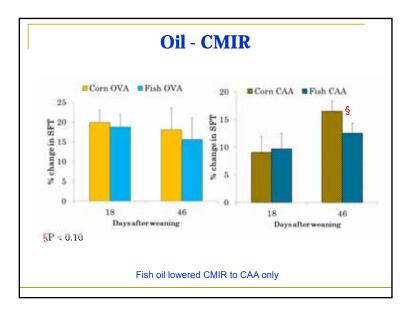

- 120 pigs weaned at 3 wk of age
 - □ 3 pens of 10 pigs per dietary treatment
 - Growth performance data- BW, ADG, ADFI, G:F
- 12 pigs per treatment
 - Vaccinated against
 - Ovalbumin (OVA) extracellular antigen
 - Candida albicans (CAA) intracellular antigen
 - Antibody-mediated immune response (AMIR)
 - Serum IgG1 and IgG2
 - Cell-mediated immune response (CMIR)
 - % change in skin fold thickness (SFT)


	Hig	High Quality			Low Quality			
	Phase I	Phase II	Phase III	Phase I	Phase II	Phase III		
ngredients								
Corn	32.50	46.10	53.00	45.30	41.00	36.90		
Soybean meal	10.00	15.0	21.00	30.00	35.00	40.00		
Soybean isolate	9.30	3.00						
Whey, dried	20.00	8.00						
Blood plasma	4.50	2.00						
Blood meal		2.00	2.00					
Corn oil/Fish oil	5.00	5.00	5.00	5.00	5.00	5.00		
Tallow	2.50	2.50	2.50	2.50	2.50	2.50		
Wheat	15.00	15.00	15.00	15.00	15.00	15.00		
L-Lysine-HCI		0.30	0.43	0.37	0.26	0.04		
DL-Methionine	0.13	0.14	0.11	0.15	0.11	0.04		
L-Threonine			0.02	0.02				
L-Tryptophan	0.05	0.15	0.16	0.24	0.12			
Others	3.45	3.30	3.30	3.94	3.51	3.00		









Summary (1/2)

- Nursery diet protein quality is critical during the early nursery phase (Phase I & II) to stimulate feed intake and growth
- Reducing nursery diet protein quality does not impact long-term pig growth performance
- Fish oil improved nursery and overall Gain: Feed

Summary (2/2)

- Fish oil seems to affect immune response more than nursery diet protein quality
 - Fish oil attenuated host acute phase immune response
 - Antibody mediated (IgG1 and IgG2)
 - Cell mediated (skin fold thickness)
- Diet represents various opportunities to influence the pigs immune response

Conclusions & Implications

- No impact of nursery diet complexity on wean-tofinish growth performance or carcass value
 - Reduced nursery feed costs creates opportunity for increased profits
- Interactions between nursery diet complexity and immune response – during a severe disease challenge
 - requires further exploring
 - May be mediated through long-term changes in gut micro-flora and expression of genes involved in the immune response
 - Focus on immuno-nutrition (fatty acids, amino acidd; bioactive peptides) & pig genotype x environment interactions

