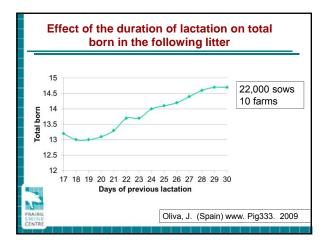


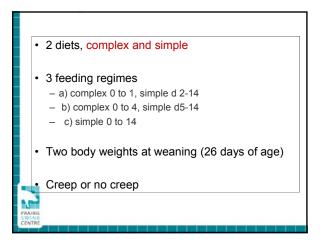
At weaning, a piglet experiences a different ;


- Diet

- Nutrients, composition, form, temperature
 Environment
 Pen, penning, flooring
- Temperature
- Humidity
- Feeder and waterer
- Immune challenges
- Social environment
- Pen-mates
- No access to sow

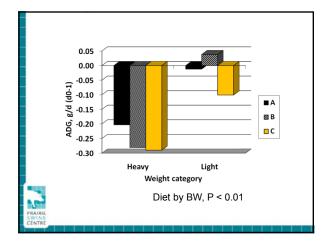
Gest = gestation WI = weaning interval Lact = lactation interval

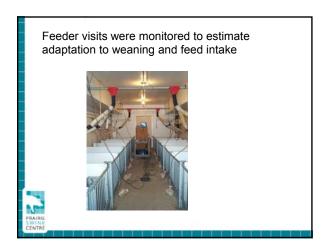
If Lact = 21 then LSY = 2.58 If Lact = 28 then LSY = 2.48

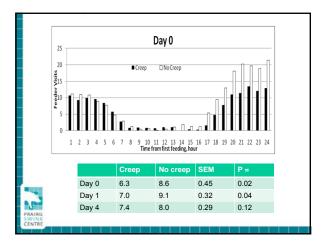


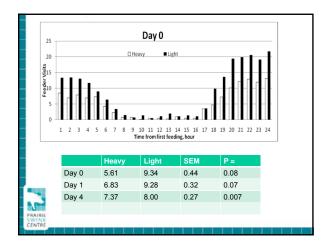
		Wear	ning age		
	12	15	18	21	P < (linear)
Day 3 pre wean wt, kg	3.42	4.26	4.89	5.75	0.001
Off-test wt, kg	104	109	112	117	0.001
ADG, postweaning g	643	671	686	714	0.001
Mortality, %	9.39	7.88	6.80	3.68	0.001
Weight sold per pig weaned, kg	94.1	100.5	104.4	113.1	0.001

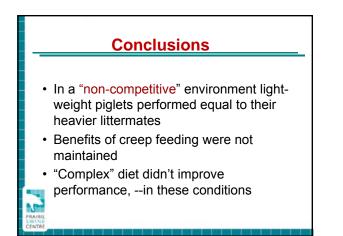
Increasing weaning age improves pig performance in a multisite production system									
	Weaning age								
	12	15	18	21		P < (linear)			
Day 3 pre wean wt, kg	3.42	4.26	4.89	5.75		0.001			
Off-test wt, kg	104	109	112	117		0.001			
ADG, postweaning g	643	671	686	714		0.001			
Mortality, %	9.39	7.88	6.80	3.68		0.001			
Weight "improveme weaner growth and pro	oductivi	ty obse	rved w			0.001			
increasing wea									
of both weight	and ph	ysiolog	icai ma	nunty					
at weaning									
PRAIRIE				Main	et	al. 2004			
ک کا کا کا کا ایک ایک کا کا ک									

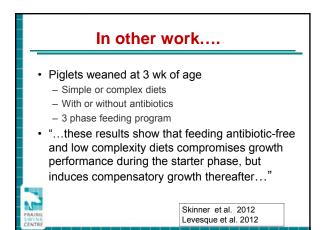

	Ingredient	Simple	Complex
hase 1	Wheat	29.860	24.201
nase i	Soymeal	25.000	16.900
diets	Peas	10.000	10.000
ulets	Canola meal	7.800	
	Corn		20.000
	Corn DDGS	20.000	
	SD Whey		14.286
	SD Plasma		2.500
	SD Blood meal		2.500
	Menhaden FM		5.000
	Canola oil	2.800	1.753
	Limestone	0.850	0.700
	Monodicalcium	1.150	0.150
	PSCI Vitamins	0.600	0.600
	PSCI minerals	0.600	0.600
	Salt	0.400	0.250
	Lysine HCI	0.385	0.020
	L-threonine	0.245	0.190
	DL methionine	0.090	0.130
	LS20	0.100	0.100
	choline chloride	0.080	0.080
	CuSO4*5H2O	0.040	0.040

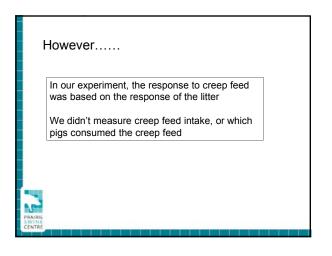

		Die	etary regi	me		
Kg/d		А	В	С	SEM	P value
ADG	d 0-1	-0.11	-0.12	-0.20	0.02	0.002
	d 2-4	0.03	0.14	0.06	0.01	<0.001
	d 5-7	0.14	0.13	0.15	0.01	0.21
	d 8 - 14	0.31	0.30	0.33	0.01	0.05
	BW, kg	10.96	11.25	11.10	0.17	0.14

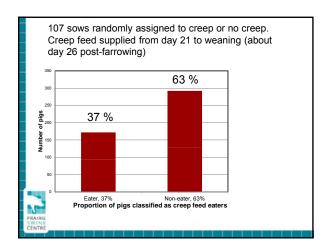

The effect of weaning weight on growth in the nursery									
	Weaning	g weight							
	Heavy	Light		SEM	P <				
Body weight	10.40	6.44		0.07	<0.001				
Kg/d d 0-1	-0.26	-0.02		0.02	<0.001				
d 2-4	0.07	0.08		0.00	0.04				
d 5 – 7	0.12	0.15		0.01	0.001				
d 8 – 1	4 0.29	0.34		0.01	<0.001				
Final BW, kg	12.73	9.48		0.16	<0.001				
PRAIRIE SWINE CENTRE		Bea	aulieu et	al. 2010					

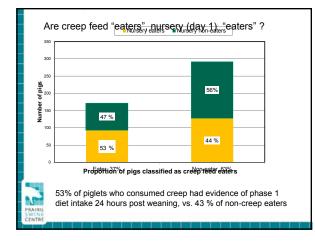

The response of piglets to creep feed in the farrowing room


		Creep	feed							
Kg/d		No	Yes		SEM	P <				
ADG	d 0 – 1	-0.12	-0.16		0.02	0.36				
	d 2 -4	0.08	0.07		0.01	0.43				
	d 5 – 7	0.16	0.12		0.02	0.20				
	d 8 – 14	0.33	0.30		0.02	0.20				
Final BW,	kg	8.88	8.96		0.14	0.70				
PRAIRIE	Beaulieu et al. 2010									

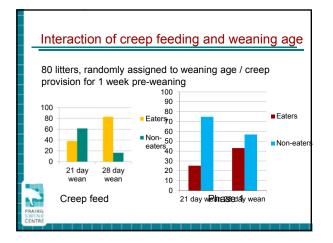


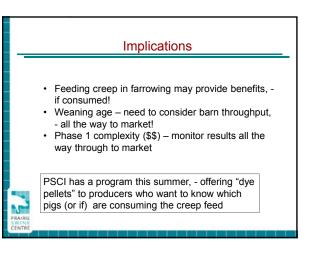


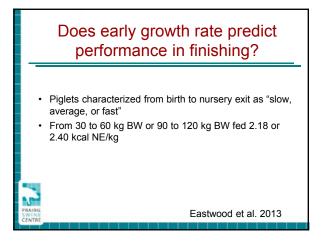


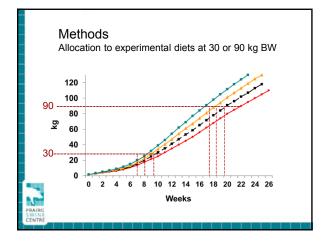


107 sows randomly assigned to creep or no creep. Creep (commercial stage 1) feed supplied from day 21 to weaning (about day 26 post-farrowing)


	Creep	No creep	SEM	P value
Ν	578	538		
BW, kg				
Birth	1.49	1.47	0.02	ns
Day 21	5.81	6.04	80.0	<0.01
Weaning	7.58	7.74	0.10	0.11







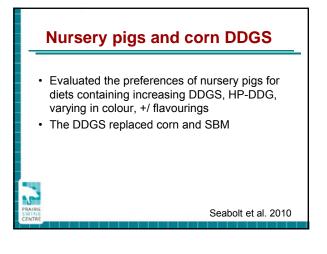
	Creep- eaters	Creep non-eaters	SEM	P value
Ν	175	296		
BW, kg				
Birth	1.47	1.45	0.02	ns
Day 21	5.52	5.82	0.08	<0.01
Weaning	7.64	7.61	0.10	0.11
ADG, nursery, kg/d				
Wean to d 3	0.16	0.11	0.02	0.001
Day 4 to d 7	0.15	0.12	0.02	0.006
Day 8 to d14	0.36	0.32	0.02	0.001
Day 15 to exit	0.64	0.61	0.02	0.005
Wean to exit	0.45	0.42	0.01	0.001
BW, kg nursery exit	20.60	19.79	0.44	0.007
Response to c	reep is c	bserved, if th	iey ea	t it!
Ē				

	Formulated NE Concentration, Mcal/kg							
Item	Growers (30 to 60 kg)	Finishers	Finishers (90 to 120 kg				
	2.18	2.40	2.18	2.40				
Ingredient, % as-fed								
Barley	65.6	4.0	67.8	11.2				
SBM	25.6	25.6	23.2	22.0				
Wheat	4.0	63.0	4.0	59.1				
Canola Oil	1.00	3.50	1.00	3.50				
L-Lysine HCI	0.105	0.155	0.200	0.335				
L-Threonine	0.000	0.030	0.035	0.100				
DL-Methionine	0.000	0.005	0.045	0.070				
Nutrient, as-fed								
g TID Lys/Mcal NE	4.27	4.00	4.37	4.24				
DE, Mcal/kg	3.25	3.56	3.20	3.52				
ME, Mcal/kg	3.04	3.32	3.01	3.29				

Effect of growth potential and dietary NE on
performance of barrows growing from 90 to 120 kg BW

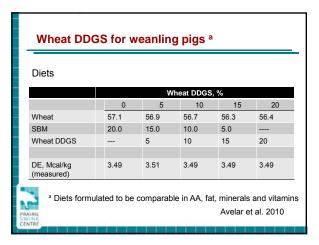
	Slow	Avg	Fast	2.18	2.40	GP	NE
Pretrial BW DOA, g	335	397	457	392	400	<0.001	0.18
Initial BW, kg	90	90	91	90	90	0.12	0.50
Final BW	119	120	119	119	119	0.44	0.93
n days on test	33	32	31	32	33	0.48	0.68
ADG, kg/d	0.93	0.93	0.93	0.95	0.91	1.00	0.24
ADFI, kg/d	3.04	3.01	3.02	3.09	2.96	0.91	0.02
G:F	0.31	0.31	0.31	0.31	0.31	0.87	0.75
(F:G)	3.36	3.27	3.31	3.34	3.29	0.75	0.56
5							

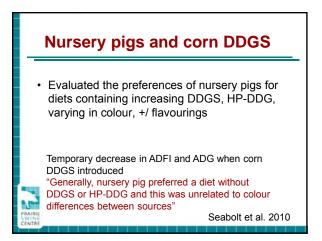
Effect of growth potential and dietary NE on nutrient deposition or body composition of barrows slaughtered at 120 kg BW


- GP had no effect on body composition of pigs slaughtered at either 60 or 120 kg BW
- Efficiency of energy utilized for BW gain (Mcal NE/kg gain) was unaffected by GP or NE
- Protein, lipid or water deposition in the carcass was unaffected by GP

No advantage to be gained from segregating pigs and developing feeding strategies based on GP at nursery exit

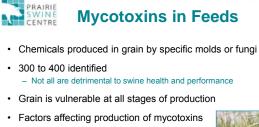
Eastwood et al. 2013





		nclusion 2 and 3 di		SEM	P value	
	0	10	20			Initial BW,
ADG, g						6.74 kg
Starter 1	169	164	167	15	0.98	
Starter 2	242	195	212	13	0.06	
Starter 3	443	432	418	19	0.62	
ADFI						
Starter 1	211	195	214	12	0.88	
Starter 2	354	320	325	11	0.03	
Starter 3	712	667	665	28	0.52	
G:F						
Starter 1	803 (1.25)	834 (1.20)	775 (1.29)	46	0.83	
Starter 2	679 (1.27)	604 (1.66)	641 (1.56)	30	0.36	
Starter 3	661 (1.51)	658 (1.52)	650 (1.54)	15	0.67	Seabolt et al. 2010
CENTRE						

		Inclusion comparison, % ^b					
	0 vs 0	10 vs 0	20 vs 0	30 vs 0	P value		
Day 1º	48	41	27	17	0.001		
Day 2	52	29	28	18	0.001		
	ce test was con ex starter diet du			aning. The	pigs were		

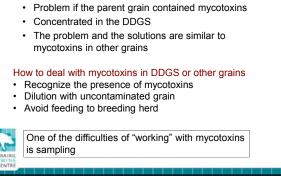


	Wheat DDGS, %							
Day 0 to 28 ^b	0	5	10	15	20	P value		
ADG, g/d	375	376	375	362	191	0.001		
ADFI, g/d	539	533	531	511	341	0.001		
G:F	0.73	0.73	0.73	0.73	0.56	0.001		
F:G	1.37	1.37	1.37	1.37	1.79			
^a Initial BW 6 ^b Similar resu		o 7, 8 to 1	14, 15 to 2	21 or 22 t	o 28			

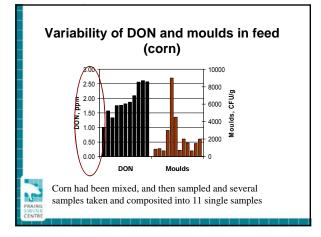
Lent 1.8 millior Up to 10	n tonr	es produce	ed in We	stern Ca	inada in	2011
%	Lentil	s Peas				
CP	24.5	21				
Starch	36.5	45				
Crude fat	1	1				
NDF	15	12				
		% protein	Lentils	Peas	SBM	СМ
		Lysine	6.1	7.3	6.1	5.5
		Threonine	4.1	3.8	3.9	3.5
-		SAA	2.0	2.3	2.9	3.3
B. (197		Tryptophan	1.0	0.9	1.3	1.1
PRAIRIE SWINE CENTRE						

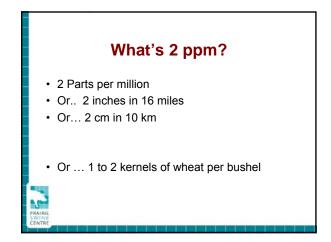
Nutritional value of lentils in pigs

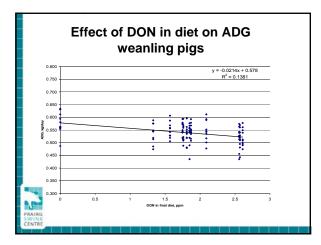
Ileal dig protein, % 63 73 DE (Mcal/kg DM) 3.712 3.900 NE (Mcal/ kg DM) 2.600 2.685	%	Lentils	Peas
DE (Mcal/kg DM) 3.712 3.900			
NE (Mcai/ kg DM) 2.600 2.685 Frowing pigs – 40% lentils, maintained ADG (Leterme 200	lleal dig protein, %	63	73
irowing pigs – 40% lentils, maintained ADG (Leterme 200	DE (Mcal/kg DM)	3.712	3.900
	NE (Mcal/ kg DM)	2.600	2.685
/eanling pigs – should not exceed 22.5 % (Zijlstra et al. 20			
	rowing pigs – 40	% lentils, maintaine	ed ADG (Leterme 200
	0.0		



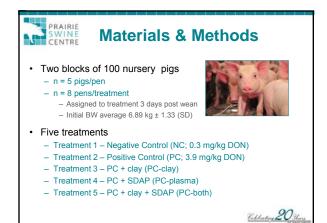
- Moisture level
- Temperature
- Availability of oxygen during storage
- Increasing levels of mycotoxins in feedstuff


 High stress growing seasons




Celebrating 20 %

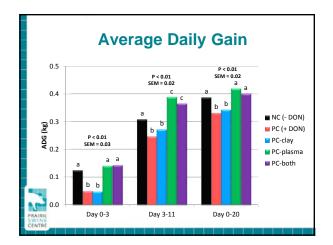
Mycotoxins

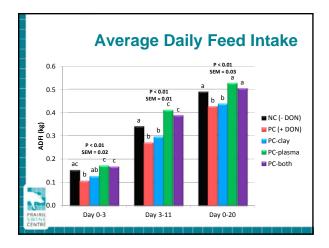

laura.eastwood@usask.ca denise.beaulieu@usask.ca

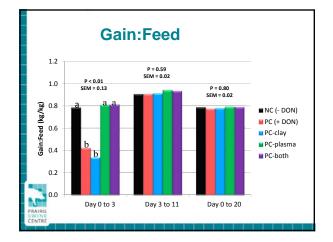
Spray-Dried Animal Plasma • Increased animal performance - ↑ ADG and ADFI when added to starter diets (Kats et al. 1994) • Improved gut health - ↑ intestinal health in pigs (Ruhong et al., 2000) - ↑ intestinal health in pigs (Ruhong et al., 2000) - ↑ intestinal health in pigs (Frank et al., 2007) - ↓ toxic effects of Staphylococcus aureus enterotoxin B in rats (Perez-Bosque et al., 2010) • Potential for positive effects in swine fed DON - limited research

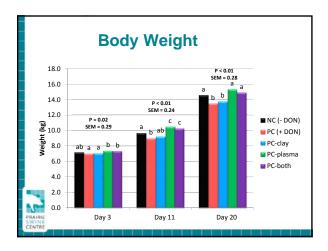
Objectives & Hypothesis

Determine if adding spray dried animal plasma and/or an activated clay binder would improve ADFI and ADG in weanling pigs fed DON contaminated diets

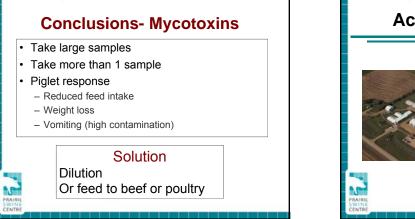

We hypothesized that SDAP and activated clay binders would mitigate the effects of DON on animal growth performance, and furthermore we hypothesized that these effects would be additive






			Treatm	ent	
Ingredients ^{1,2} , % as fed	NC	PC	PC-clay	PC-plasma	PC-both
Wheat	50.8	28.8	28.6	27.8	27.6
DON wheat (9.3 mg/kg)	0.0	22.0	22.0	22.0	22.0
Soybean Meal	19.0	19.0	19.0	18.1	18.1
Whey Powder	11.7	11.7	11.7	11.4	11.4
Fish Meal	9.0	9.0	9.0	0.0	0.0
Barley	4.9	4.9	4.9	5.8	5.8
Canola Oil	2.3	2.3	2.3	2.4	2.4
LS 20	0.1	0.1	0.1	0.1	0.1
Activated Clay	0.0	0.0	0.2	0.0	0.2
SDAP (AP920, APC Inc)	0.0	0.0	0.0	8.0	8.0
Analyzed DON, mg/kg	0.0	3.2	3.6	4.2	4.4





	Dietary Treatment						
Intestinal Parameter	NC	PC	PC – clay	PC – plasma	PC - both	SEM	P-Value
Mucosal Thickness, µm	415	437	433	427	398	14.1	0.27
Villus Height (VH), µm	246	261	239	259	237	15.3	0.32
Crypt Depth (CD), µm	91ª	92ª	94ª	87 ^{ab}	77 ^b	4.3	0.04
VH to CD Ratio, µm/µm	2.75	2.89	2.58	3.03	3.15	0.19	0.06
	Per	leum		Distan-		PC-both I	leum

